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SUMMARY 
The paper presents a modification to two well-known non-iterative implicit finite-difference schemes for 
confined and unconfined boundary-layer-type flows. The modification aims at improving the accuracy of 
these schemes by reducing the adverse effect of linearization, which is inherent in both of them. Using the 
present improved scheme, the same level of accuracy of the results could be obtained with large mesh sizes in 
the flow direction (coarse grid). The modification is done by adding a local iterative procedure at each 
computational step in the flow (marching) direction. As an example, to demonstrate the proposed modifica- 
tion, the simple case of developing forced convection in the entry region of concentric annuli has been 
considered. The results are presented, which prove the applicability of the proposed modification and show 
its effect on the obtained accuracy and on the required computer time. 

KEY WORDS Iterative Finite-difference Confined Unconfined Boundary-layer flows 

INTRODUCTION 

In 1955, Rouleau and Osterle' presented a non-iterative implicit finite-difference scheme for 
solving the momentum and mass conservation equations which govern the two-dimensional 
boundary-layer-type flows. Using this scheme, they obtained numerical solutions for two uncon- 
fined boundary-layer flows, namely, the problem of a longitudinal flow over a flat plate with an 
arbitrary distribution of suction at the plate surface and the problem of mixing of a two- 
dimensional jet and a parallel-uniform stream when the jet discharges parallel and adjacent to 
a flat plate. 

In 1961, Bodoia and Osterle2 extended the aforementioned finite-difference scheme to handle 
cases with a variable pressure in the direction of flow. As a result of this extension, they obtained 
numerical solutions for the developing viscous flow, with a uniform entrance velocity profile, 
through a straight channel formed by two parallel flat plates when the two plates are stationary 
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and when one of them is moving parallel to the other. Then Bodoia and Osterle3 used this 
extended finite-difference scheme for solving numerically the boundary-layer-type equations 
which govern the developing free convection between two heated vertical parallel plates. 

Since these publications,’ - 3  the above-mentioned non-iterative implicit finite-difference 
schemes have been extensively used or developed to obtain numerical solutions for the boundary- 
layer-type equations which may describe the flow in many cases. Such cases include, for example, 
developing forced, mixed or induced flows in the entry region of ducts of various geometrical 
shapes under a variety of boundary conditions and flows about stationary or rotating bodies of 
revolution in fluid streams. Only some of the vast amount of published papers which have utilized 
numerical procedures based on the non-iterative implicit finite-difference schemes of Rouleau and 
Osterle’ and Bodoia and O~terle’.~ will be reviewed hereinafter. 

Shohet4*’ used the scheme of Bodoia and Osterle’ and obtained numerical solutions for the 
magnetohydrodynamic entrance region problem in annular channels. Hornbeck et aL6 solved the 
entry region problem in porous tubes. Magnetohydrodynamic and forced convection flows in the 
entrance region of flat rectangular ducts were investigated by Hwang and Fan.7p8 Hornbeckg-” 
and Sutterby” treated the laminar flow problem at the entrance region of circular tubes and 
conical ducts, respectively. Coney and El-Shaarawi’ presented results for the problem of 
incompressible laminar flow heat transfer in concentric annuli with simultaneously developing 
hydrodynamic and thermal boundary layers, the boundary conditions of one wall being isother- 
mal and the other being adiabatic. 

Lawrence and ChatoI4 used the same scheme (of Bodoia and Osterle’) and obtained a numer- 
ical solution to the boundary-layer-type equations for the developing combined forced-free 
laminar flow in a vertical tube with a uniform velocity profile at the entrance and a constant wall 
heat flux. Marner and McMillan” treated the same problem, but with a constant wall temper- 
ature. Sherwin and and El-Shaarawi and Sarhan18 presented results for the problem 
of combined forced-free laminar convection in the entrance region of vertical concentric annuli. 

The developing natural convection in vertical ducts has been treated by several investigators 
using the non-iterative finite-difference scheme of Bodoia and O~te r l e .~  Dyer and Fowler,lg Aung 
et al.,” Miyatake and Fujii’ ’*’’ and Miyatake et aLZ3 investigated the developing free convec- 
tion between heated vertical parallel plates with various boundary and inlet conditions. 
Kageyama and Iz~rn i , ’~  Davis and Perona,” and DyerZ6 dealt with the developing free 
convection in vertical circular tubes both with constant heat flux and with constant temperature 
boundary conditions. Dyerz7 investigated the effect of an inlet restriction on the developing free 
convection flow in circular tubes. With one boundary being adiabatic while the opposite 
boundary is isothermal or at constant heat flux, the developing free convection in open-ended 
vertical concentric annuli was investigated by El-Shaarawi and SarhanZ8 and Al-Arabi et al.,” 
respectively. 

Coney and El-Shaarawi3’ presented an indirect extension of the original work of Bodoia and 
Osterle’ to include the case of rotating boundaries. Then, they31 presented results for laminar 
flow heat transfer in the entrance region of concentric annuli with rotating inner walls. El- 
Shaarawi and Sarhan3’ used this extension and presented results for the problem of mixed 
convection in vertical annuli with rotating inner walls. El-Shaarawi and S a r h a ~ ? ~  and El- 
Shaarawi and K h a r n i ~ ~ ~  considered, respectively, the developing laminar free convection in 
isothermally heated and uniformly heated vertical annuli with rotating inner walls. 

El-Shaarawi et aL3’ presented an extension of the finite-difference scheme of Rouleau and 
Osterle’ to deal with unconfined flows with rotating boundaries. Recently, El-Shaarawi et ~ 1 . ~ ~  
applied this extended finite-difference scheme to the problem of mixed convection about a rotat- 
ing sphere in an axial stream. 
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The main objective of this paper is to present a simple modification to the non-iterative implicit 
finite-difference schemes of Rouleau and Osterle' and Bodoia and Osterle.'. Such a modification 
aims at increasing the accuracy of these schemes without decreasing the mesh sizes in the flow 
direction. This is done by including an iterative procedure at each step in the flow (boundary- 
layer) direction. The iterative process is executed, at each station and before moving to the next 
station in the marching (flow or boundary-layer) direction, by readjusting the values of the 
linearized coefficients in the inertia terms of the finite-difference equation(s) corresponding to the 
momentum equation(s). Such a readjustment is done iteratively between the values of the velocity 
components at the station under consideration and the corresponding values at the previous 
station. Thus, this proposed iterative procedure depends on the upstream flow values, has no 
relation with the corresponding downstream values, and may, hence, be applied at all or some 
selected stations in the flow direction. It can, therefore, be considered as a local or an internal 
iterative process within the numerical scheme. It will reduce the adverse effect of linearization 
inherent in the schemes of Rouleau and Osterle' and Bodoia and Osterle.2 

The proposed modification can easily be applied to any of the previously mentioned extensions 
which deal with cases having rotating boundaries. However, for the purpose of demonstration, 
the simple case of a developing forced convection in the entry region of a stationary concentric 
annulus has been chosen. This case, which has previously been solved by several investiga- 
t o r ~ , ' ~ . ~ ~  will be utilized to explain the idea of the modification and discuss its effect on the 
accuracy of the results and on the required computer time. In order to achieve such a clarification, 
and also for the sake of completeness, the governing differential equations, their corresponding 
finite-difference representations, the method of the numerical solution using Bodoia and Osterle's 
scheme, the main features of this scheme and also of the scheme of Rouleau and Osterle, which 
stimulated the idea of modification, will first be briefly reviewed. Then, the proposed modification 
will be presented and its effect on the accuracy of the results and on the computation time will be 
displayed. 

ON THE SCHEMES OF ROULEAU AND OSTERLE' AND BODOIA AND OSTERLE2v3 

One of the main advantages of the implicit finite-difference scheme of Rouleau and Osterle' for 
unconfined flows is that the difference equations are linearized and locally uncoupled. This is 
achieved by assuming that where the product of two unknowns occurs, one of them is given 
approximately by its value at the previous position. Thus, the continuity equation becomes 
locally (i.e. within one step in the marching direction) uncoupled from the momentum equation 
and its solution may be deferred until the momentum equation is solved and the velocity 
component in the direction of flow is obtained. Then, the continuity equation can be solved to 
obtain the velocity component in the normal direction. 

On the other hand, if the flow is confined, it may be difficult to determine the pressure 
distribution at the outer edge of the boundary layer and, hence, the pressure gradient in the flow 
direction within the boundary layer remains unknown in the boundary-layer flow model. Thus, in 
such a case, the simplified (boundary-layer) flow model includes only two equations in three 
unknowns (the two velocity components and the pressure). To avoid this obstacle, Bodoia and 
Osterle2s used the integral continuity equation together with a linearized finite-difference form of 
the momentum equation as two equations in only two unknowns (the pressure and the velocity 
component in the flow direction). This is achieved by linearizing the inertia terms in the 
momentum equations. Similar to the case of unconfined flows, such a linearization is done by 
assuming that where the product of two unknowns occurs, one of them is replaced by its value at 
the previous position. Thus, the value of the normal velocity component, which appears in one of 

, 
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the inertia terms of the momentum equation, is considered known from the previous step. After 
computing the pressure and the velocity component in the direction of flow at each marching 
station, the actual values of the normal velocity component at that station are obtained from 
a difference form of the continuity differential equation. 

As can be seen from the previous discussion, both the finite-difference schemes of Rouleau and 
Osterle’ and Bodoia and Osterle2s3 depend mainly on the linearization of the inertia terms of the 
momentum equation. Therefore, the accuracy of the obtained velocity components, and specially 
the normal velocity component, can always be increased by using small mesh sizes in the 
marching direction (in order to reduce the adverse effect of linearization). However, it may be 
worth mentioning that, for entrance region flows, the boundary-layer equations become asymp- 
totically exact (i.e. identical to the original Navier-Stokes equations of motion) as the flow moves 
away from the entrance. This is because (1)as the flow moves away from the entrance, it 
approaches full development and, hence, the diffusion of momentum in the flow direction (which 
is neglected by boundary-layer assumptions) becomes vanishingly small, and (2) the inertia terms 
gradually vanish. Thus, as a result of this second reason, it is expected that the adverse effect of 
linearization will be reduced as the flow moves away from the entrance. 

On the other hand, one would like to avoid or reduce the adverse effect of linearizing the inertia 
terms all over the domain of solution, particularly near the point at which the boundary-layer(s) 
starts its formation. The present modification has achieved this goal, as will be clarified by the 
results given at the end of this paper. This modification comprises an adjustment of the linearized 
coefficients through an iterative procedure at each step in the main flow (boundary-layer) 
direction instead of directly advancing to the next step as in the schemes of References 1-3. 

A CASE FOR DEMONSTRATION 

Consider steady, rotationally symmetric, laminar flow of an incompressible Newtonian fluid with 
constant physical properties in the entry region of a concentric annulus having an inner radius rl 
and an outer radius r2. Figure 1 illustrates the geometry, co-ordinate system, and the finite- 
difference grid used. Let the inner wall of the annulus be isothermally heated to a temperature, 
tw ,  which is greater than that of the ambient, to, while the outer wall is perfectly insulated. Fluid is 
pumped into the annular gap between the two cylindrical walls and is assumed to enter the 
channel with a uniform velocity profile at a value equal to the mean axial velocity in the annular 
gap, uo, and with a uniform temperature profile at a value equal to the ambient temperature, to. 
The flow is without internal heat generation and both viscous dissipation and axial conduction 
(diffusion) of heat are neglected. Further, applying Prandtls’ boundary-layer assumptions, which 
are valid if the inertial forces are large relative to the viscous forces, the conservation equations for 
mass, momentum and energy which govern the case under consideration are, respectively, in their 
dimensionless forms, as follows: 

av v au 
aR R az - +-+- =0, 
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Figure 1. (a) Two-dimensional channel; (b) finite-difference network; (c) grid points for the momentum and energy 
equations; (d) grid points for the continuity equation 

In the above equations R = r/rz,  U = u/u0, P = ( p  - po)/(p u;), V =  pur2/ji, Z = 2z( 1 - N)/(rz Re), 
T =  ( t  - to)/(tw - to )  and Pr = p / k ,  where c is the specific heat of fluid under constant pressure, k is 
its thermal conductivity, N is the annulus radius ratio ( =rl/rz), p is the fluid pressure, r is the 
radial co-ordinate, Re is the Reynolds number [ = 2(rz - rI)  pu0/p], t is the fluid temperature, u is 
the axial velocity component, u is the radial velocity component, z is the axial co-ordinate, p is the 
fluid viscosity, p is the fluid density, and the subscript o denotes ‘at entrance cross-section’. The 
assumption of constant physical properties uncouples the energy equation (3) from the continuity 
and momentum equations, (1) and (2), respectively. 

In Figures l(c) and l(d), parts of the finite-difference domain are drawn to show the points 
involved in transforming each differential equation into its finite-difference form. Thus, the 
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finite-difference representations of the above equations are, respectively, as f9llows: 

(4) 
Vi+ 1 ,  j +  1 - Vi, j +  1 + Vi+ 1 ,  j +  1 + Vi, j +  1 ui+ 1 ,  j +  1 + Ui, j +  1 - Ui+ I ,  j -  ui, j = o, 

AR 2 [ N  + ( i  - 1/2) AR] + 2 A 2  

The above equations are subject to the following boundary conditions: 

T 1 ,  j =  1 and T,, j =  T n + Z , j  

The linearization of the first inertia term in equation ( 5 )  makes this equation as if it were with 
only two unknowns (U and P) ,  since the value of Vis taken as known from the previous axial step. 
Thus, if we have another governing equation which contains U only, then such an equation with 
equation (5 )  will form a complete system of two equations in two unknowns. Indeed, the following 
integral continuity equation satisfies this requirement: 

{i UR dR = ( 1  - N2)/2. (7) 

Rewriting this equation using the trapezoidal rule and applying the boundary conditions 
Ui, = U ,  + 1 ,  = 0, one obtains 

n 

AR U i ,  j [ N + ( i -  1)  R] = ( 1  - N 2 ) / 2 .  
i = 2  

Now, equations ( 5 )  and (8) can be solved together to find the unknown values of U's and P (with 
subscripts j +  1). Having obtained the values of U, the correct values of V at the cross-section 
under consideration can be computed by means of equation (4). Repeating this process, in the 
scheme of Bodoia and Osterle, we can advance step by step downstream. 

It is instructive to mention that equation (7) is in fact an integrated form of equation (1) subject 
to the appropriate boundary conditions. Therefore, equations (1) and (7) are not independent 
relationships and it may appear that we are computing three variables (U ,  V and P) by means of 
only two equations (the simplified z-momentum equation and the continuity equation). However, 
this is not true since the cornerstone of Bodoia and Osterle's linearized finite-difference technique 
is the application of equations (5 )  and (8) at each cross-section with the values of Vin equation (5 )  
as taken from the previous axial step, i.e. equations ( 5 )  and (8) are considered as two equations in 
only two unknowns (U and P). Then, after computing U and P at each cross-section, the values of 
V at that cross-section are obtained by means of equation (4) with the known values of U. 
Therefore, it is clear that the accuracy of the obtained values of V can always be increased by 
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using small axial mesh sizes (particularly near the entrance, where the gradients and values of 
Vare expected to be large), which at  the same time implies a reduction in the adverse effect of the 
linearization with respect to U in the finite-difference representation (5) of equation (2). However, 
such a goal may be achieved without using small axial mesh sizes through utilization of the 
following modified scheme. 

Figure 2 gives a flow chart illustrating the proposed modified scheme. The numerical procedure 
for the case under consideration is summarized as follows. Starting with j =  1 (entrance cross- 
section) and applying equation (5) ,  with i = 2,3 ,  . . . , n, and equation (8) to the entire cross-section 
we get n simultaneous linear algebraic equations which when solved give the values of n un- 
knowns, namely, U 2 , 2 ,  U 3 , 2 , .  . . , U,,- 1 ,  2 ,  U,,, 2, and P2.  Using these computed values of U's and 
applying equation (4), we get the values of V's at all points of the second column. At this stage the 
obtained values of U's and V's will be used to adjust the linearized (underlined) coefficients of the 
inertia terms of equation (5) in order to obtain more accurate values of U's, P and, hence, V ' s  at 
the second cross-section. Such a return (with the new values of U and V) to the momentum 
equation will be repeated until the computed values of U ,  V, and P at the second cross-section do 
not practically change with iteration. In other words, the iteration process continues until the 
change in the value of any of the computed unknowns within the consequent iterations does not 
exceed a prespecified value. When such a condition is achieved and the iteration across the axial 
step is completed, we can solve the energy equation (6) with the underlined coefficients adjusted 
using the obtained values of Ui, and Vi, (instead of the linearized values Ui, and Vi, J. Then, 

\ 

Figure 2. Flow chart for the modified scheme 
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we can advance one step in the marching (axial) direction and repeat the whole cycle with j =  2. 
Thus, the computations proceed step by step until full development is achieved. 

To differentiate between the final acceptable values of an unknown, which are obtained at the 
end of the iteration process, and its (intermediate) values during the iteration process, the latter 
have been superscripted by an asterisk in the flow chart of Figure 2. Thus, the computations are at 
every new axial step using equation (5). Then, after obtaining the temporary (iterative) values of 
U and P, equation (5 )  is replaced (during the iterative process) by the following equation: 

u. . -u.  
AZ 

u i + ~ . j + ~ - ~ i - ~ . j + ~  b l + 1  j = RHS of equation (5).  + u t j + 1  2AR Vifj+ 1 (9) 

On the other hand, it is possible, in the present forced convection case [since there is no coupling 
between the energy equation (3), i.e. equation (6), and the momentum equation (2), i.e. equation 
(511, to use the following equation directly instead of equation (6): 

T. . -T. 
+ U i , j + l  '*'+' "'=RHS of equation (6). Ti+I,j+1-Ti-l.j+1 

2AR AZ Vi, j+ I 

However, it should be emphasized that in cases of mixed or free convection, the energy equation 
will be coupled with the momentum equation and it will not be possible to use equation (10). In 
such cases, the computation should start for each new axial step using equation (6). Then, after 
obtaining the first temporary (iterative) values of U, P, and V, equation (6) is replaced (during the 
iterative process) by the following equation: 

T. . - T. . Ti+ I ,  j- 1 - Ti- I. j+ I 

2AR 
I ,  I +  1 = RHS of equation (6). 

AZ + u t j + ,  V?j+ 1 

Thus, the principle of the present modified scheme is to employ two difference equations for each 
of the momentum and energy equations. 

RESULTS AND DISCUSSION 

It should be noted that the present results do not aim at giving fluid-flow and heat-transfer data 
for the case under consideration; such data are available in the literature as this case has already 
been solved by several  investigator^.'^^^' In fact, the aim of the present results is to demonstrate 
the applicability of the proposed modified finite-difference scheme and to display the effect of such 
a modification on the accuracy of Bodoia and Osterle's scheme and on the required computer 
time. In order to achieve such a comparative task, it was decided to fix the number of radial 
increments equal to 20 over the entire development region in all the computer runs. Moreover, in 
all the computer runs which employ the modified scheme, the iteration process ends if the 
computed values of the axial velocity component (Utj+ show little further change with 
iteration; a maximum tolerable value of 0.005 per cent was chosen as the percentage change in 
Uifj+ between any two successive iterations. 

All the computations were carried out in an annulus of radius ratio N=0*9 for a fluid of 
Pr=0.7.  The first computer run was made employing the modified scheme (which includes 
iteration across each axial step) with an axial mesh size A Z =  near the entrance and then the 
axial step was increased several times as the flow moves away from the entrance (approaching full 
development). A second computer run was made employing Bodoia and Osterle's scheme 
(without iteration) and using exactly the same mesh sizes of the first computer run (so that the 
order of truncation-error magnitude would be the same as in the first run). Each of these two runs 
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was then repeated three times but with axial mesh sizes equal to, respectively, five, ten, and 20 
times the axial mesh sizes of the first computer run. These additional six runs were carried out in 
order to investigate the effect of the axial mesh size on the accuracy of the results and on the 
computer time needed in both cases (with and without iteration). The results obtained from the 
first computer run are known to be the most accurate among the series of eight computer runs 
since this run has the smallest mesh sizes and also includes the iteration process across each axial 
step. Therefore, the results of the first run will be considered a base to which all other results will 
be referred. So, denoting the axial mesh sizes of the first run by AZ1, the second, third, and fourth 
runs, in either the group of runs with iteration or in the group without iteration, will have values 
of AZ * = AZ/AZ1 = 5, 10, and 20, respectively. 

Engineers are not frequently concerned with the details of the fluid velocity and temperature 
profiles but only with the pressure drop and the mixing cup (mixed-mean) fluid temperature. The 
latter is defined by the equation 

which in dimensionless form is 

Such a concern exists because the pressure drop determines the required pumping power while 
the mixing cup temperature can be used to evaluate the heat transfer to the fluid between the 
annulus entrance and any other cross-section downstream. Therefore, the present work has 
focused on these two quantities. 

Tables I and I1 give, respectively, the variations of the dimensionless pressure drop, - P, and 
the mixing cup temperature, T,, with the dimensionless axial distance, Z, for the previously 
mentioned eight computer runs. Table I11 refers the results of these two quantities, in the region 

Table I. Variation of pressure (-P) with Z for eight computer runs 

Modified scheme (with iteration) Bodoia and Osterle's scheme 

Az* 
z x  105 5 10 20 1 5 10 20 

2 
6 

10 
30 
50 
90 

150 
250 
3 50 
450 
650 

1150 
1650 
3150 
8150 

0.19899 
0.3 1030 
0.3928 1 
0.69994 
0.9 5 560 
144103 
2,16296 
3.36575 
4.56854 
5.77133 
8.1 7690 

14.19084 
20,20478 
38.24659 
98.38595 

019502 
0.30992 
0.39333 
0.70101 
0.95680 
1,44247 
2-16445 
3.36725 
4.57004 
5.77282 
8.17840 

14.19233 
20.20580 
38.24770 
98.38710 

0-19098 
030830 
039283 
070073 
0.95745 
144348 
2.16573 
3.36854 
4.57133 
5.77412 
8.17969 

14.19363 
20-207 57 
38.24938 
98.38874 

0 18434 
0.30454 
0.39126 
070054 
0.95848 
144512 
2.16779 
3.37064 
457344 
5.77623 
8.18 180 

14.19574 
20.20967 
38.25 148 
98.39085 

0.20558 
0.31421 
0.39582 
0.70227 
0.9578 1 
1.44328 
2.1652 1 
3.36800 
4.57079 
5.77358 
8.1 79 15 

14.19309 
20.20702 
38.24883 
98.38820 

0.21338 
0.32706 
0.408 18 
0.71223 
0.96737 
1.45281 
2- 17479 
3.37758 
458037 
5.78315 
8.18873 

14.20266 
20.21030 
38.25740 
98.39100 

0 17807 
033474 
0.4 1 722 
0.72 162 
0.97698 
1.46329 
2.18550 
3,38831 
4.591 10 
5.79389 
8.19946 

14.2 1340 
20.22733 
38.26914 
98,40851 

0-11417 
0.32980 
0.42543 
0.73388 
0.98969 
1.47710 
2.19975 
340263 
4.60543 
5430822 
8.21379 

14.22773 
2Q24 166 
38.28347 
98.42284 
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Table 11. Variation of T,,, with Z for eight computer runs. 

Modified scheme (with iteration) Bodoia and Osterle’s scheme 

Az* 
x 105 5 10 20 1 5 10 20 

2 
6 

10 
30 
50 
90 

150 
250 
450 
650 

1150 
1650 
3150 

0.03590 
006878 
0.09202 
017395 
0.236 14 
0.33766 
0.45988 
0.61290 
0.80093 
0.89763 
0.97953 
0.99591 
0.99994 

003636 
0.06990 
0.093 19 
0.17478 
0.23674 
0.33792 
045939 
061258 
0.79813 
0.89397 
0.97880 
099532 
0.99984 

0.03582 
0.07069 
0.09402 
0.175 19 
0.23710 
0.33688 
0.45787 
0.60268 
0.78629 
0.88503 
0.96597 
0.98993 
0.99894 

0.03407 
0.07 104 
0.09476 
0.17561 
0.2373 5 
0.33547 
0.45520 
0.59239 
0.77148 
087183 
0.9521 1 
09821 1 
0.99907 

0.03569 
0.06886 
0.092 1 1 
0.1 7404 
0.23621 
0.33773 
0.45993 
0.61293 
0.80095 
0-89763 
0.97827 
0.99787 
0,99996 

0.033 15 
006940 
0.09322 
0.1 752 1 
0.23723 
033835 
0.45973 
0.61283 
0.79826 
0.89404 
0.97882 
0.99532 
0.99984 

~ 

0.03527 
0.07050 
0.09406 
0.1 752 1 
0.23714 
0.33694 
0.45793 
0.60273 
0.7863 1 
0.88504 
0.96598 
0.98993 
0.99894 

0.02752 
0.06639 
009092 
0.17953 
0.24108 
0.33885 
0.45788 
059436 
0.77257 
0.87245 
0.95234 
0.98219 
0.99907 

Table 111. Normalized pressure drop against axial distance very near to the entrance 

Az* 
105 

2 
4 
6 
8 

10 
18 
30 

2 
6 

10 
18 
30 
50 

PIP,  x 100% 

Modified scheme Bodoia and Osterle’s scheme 

5 10 20 1 5 10 20 

98.00 95.97 92.63 103.3 1 107.23 89.49 57.37 
99.36 98.34 96.06 101.86 106.51 108.18 92.33 
99.88 99.36 98.14 101.26 105.40 107.88 106.28 

100.06 99.82 99.1 1 100.95 104.54 107.02 108.72 
100.13 100.01 99.6 1 100.77 103.9 1 106.2 1 108.30 
100.20 100.03 99.82 100.48 102.58 104.32 106.47 
100.15 100.1 1 100.09 100.33 101.76 103.10 104.85 

T,,,/T,, x 100% 
101.28 99.78 94.90 99.42 92.34 98.25 76.66 
101.76 102.78 103.29 100.12 100.90 102.50 96.53 
101.27 102.17 102.98 100*10 101.30 102.22 98.80 
100.80 101.22 101.67 100.09 101.04 101.26 102.84 
100.48 100.71 100.95 100.05 100.72 100.72 103.21 
100.25 100.41 100.51 100.03 100.46 100.42 102.09 

near the annulus entrance, to their corresponding values which were obtained in the first 
computer run (with the smallest mesh sizes and using the modified scheme). Thus, in Table 111, the 
results of the first computer run represent the 100 per cent base to which the corresponding results 
of all the other computer runs are referred. As can be seen from these tables, for either group of 
computer runs (the group using the modified scheme or that using Bodoia and Osterle’s scheme), 
the accuracy of the obtained results generally increases as the axial mesh sizes decrease. This is as 
might be expected and is attributed to the decrease in the discretization error as the mesh sizes 
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Figure 3. Modified scheme with iteration (- - - ); Bodoia and Osterle’s scheme (-) 

decrease. Moreover, the percentage deviation in the results of any computer run as referred to the 
first computer-run results [i.e. AP/PI x 100% =(P-P1)/PI x 100% or AT,,,/T,,, x l00%] shows, 
as depicted in Figure 3 [apart from the slight unpredicative vibrations very near to the entrance 
(presented in Table III)], smooth decay with an increase in the value of Z (i.e. as the flow 
approaches full development). This behaviour may be attributed to the decrease in the adverse 
effect of linearization as the flow approaches the state of full development. 

Comparing the results of the group of computer runs which employ the modified scheme with 
those of the group which uses Bodoia and Osterle’s scheme, the following remarks can be made. 
The accuracy of Bodoia and Osterle’s scheme (scheme without iteration) decreases quite rapidly 
as the axial mesh size increases, especially in regions very close to the entrance. It is interesting to 
note that with AZ*=20, the result obtained for the pressure drop at Z = 2  x from the 
computer run which employs Bodoia and Osterle’s scheme is only 55.5 per cent of its correspond- 
ing value with AZ* = 1 and about 57 per cent of the corresponding value obtained from the 
computer run employing the modified scheme with AZ* = 1. However, employing the modified 
scheme with the same AZ* = 20, the corresponding result for the pressure drop at  Z = 2 x is 
improved to 92.6 per cent of the reference pressure drop (with AZ* = 1). Similar conclusions 
concerning the accuracy of the obtained mixing cup temperature can be deduced from Tables I1 
and 111. The rapid decrease in the accuracy of the obtained results with large values of AZ* in case 
of Bodoia and Osterle’s scheme as compared with the modified scheme can be attributed to the 
adverse effect of linearizing the terms on the LHS of the governing equation; the modified scheme 
has compensated for this adverse effect by the iteration process across each axial step. On the 
other hand, it can also be seen from the results presented in the tables that with values of 
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Figure 4. Modified scheme with iteration (A); Bodoia and Osterle’s scheme (0) 

Z > 8 x 10- 5 ,  the pressure drop results by the modified scheme remain within less than one per 
cent deviation even for mesh sizes 20 times larger. However, it is important to mention that with 
AZ* = 1, the results obtained by means of Bodoia and Osterle’s scheme are in good agreement 
with those obtained using the modified scheme; the maximum deviations in the pressure drop and 
the mixing cup temperature are only 3-31 and 0.58 per cent, respectively. This means that the 
modified scheme is only useful when large mesh sizes in the flow direction are used. 

It is important to compare the computer times required in all the previous computer runs so 
that the economic aspect can be taken into consideration when evaluation is needed. Figure 4 
gives these computer times against AZ*; all times are referred to that of the first computer run 
(the base run with the smallest mesh sizes and using the modified scheme). The computer time of 
any of the runs was taken as that time required for the mixing cup temperature to reach 99.995 
per cent of its fully developed value (unity). As can be seen from this figure, the difference between 
the consumed computation times in the two cases (modified scheme and non-modified scheme) 
decreases as the axial mesh size increases. Taking into consideration that with large mesh sizes the 
accuracy of the modified scheme is much better than that of Bodoia and Osterle’s scheme, the last 
point regarding the computation time justifies again the use of the modified scheme when large 
mesh sizes in the flow direction are employed. It may be important to mention that the results 
presented in Figure 4 show that with AZ* = 10, the time consumed by a computer run employing 
the modified scheme is less than 35 per cent that required by a computer run using Bodoia and 
Osterle’s scheme with AZ* = 1, even though the accuracy in both cases is comparable. 

Finally, it should be stated again that the case considered in this paper was only an example to 
demonstrate the modified scheme and its features. It is anticipated that the conclusions drawn 
from such an example are applicable to all other similar modifications applied to cases of 
unconfined flows or cases with rotating boundaries. 

CONCLUSIONS 

The paper presents a modification to the well-known non-iterative implicit finite-difference 
schemes of Bodoia and Osterle2*’ and Rouleau and Osterle’ for confined and unconfined 
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boundary-layer flows, respectively. The modification depends on the application of an iterative 
process at each step in the marching (flow) direction. The simple case of a developing forced 
convection in the entry region of concentric annuli has been considered to demonstrate the 
applicability of the proposed modification and its effect on both the obtained accuracy and the 
required computer time. It has been found that the proposed modification is very useful, 
particularly near the duct entrance; it increases the accuracy of the obtained results considerably. 
For the same required computer time, it is possible to obtain results using the modified scheme as 
accurate as the corresponding results by the other schemes even though mesh sizes in the flow 
direction are several times larger in the former than in the latter case. For entrance region flows, it 
is recommended to use the modified scheme near the entrance and then use the non-iterative 
schemes near the fully developed region without considerably affecting the accuracy of the 
obtained results. 
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